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ABSTRACT: The dramatic increase in the sensitivity of DNA
profiling systems that has occurred over recent years has led to the
need to address a wider range of interpretational problems in foren-
sic science. The issues surrounding questions of the kind “whose
DNA is this?” have been the subject of considerable controversy but
now it is clear that the emphasis is shifting to questions of the kind
“how did this DNA get here?” Such issues are discussed in this pa-
per and new insights are provided by two particular recent develop-
ments. First, the notion of the “hierarchy of propositions” that has
arisen from a project called Case Assessment and Interpretation
(CAI) that has been running in the British Forensic Science Service
(FSS). Second, a technique for drawing inferences in the face of
many interacting considerations, known as “Bayesian networks”—
or “Bayes’ nets” for short—that has been the subject of an earlier
paper in this journal (1). The discussion is carried out by means of
case studies, based on actual cases. It is clear that, whereas the in-
ference in relation to the source of the DNA in a crime sample might
be overwhelmingly strong, the inference in relation to the proposi-
tions that a jury must consider relating to the identity of the actual
offender may be much more tentative.

KEYWORDS: forensic science, interpretation, pre-assessment,
likelihood ratios, Bayesian networks, DNA profiling

Much of the DNA debate of the last decade has been concerned
with the process of individualization, where the considerations of
statistics and population genetics are paramount. Now it is appar-
ent that the emphasis in court will shift from questions of the kind
“whose DNA is this?” to “how did this person’s DNA get here?”.
Such questions invoke the standard forensic considerations of re-
covery, transference, persistence and contamination; however, the
ways in which these factors will be viewed will develop as it be-
comes possible to generate profiles from ever-smaller quantities of
DNA. Already it is feasible to amplify the DNA molecule from a
single cell.

In this paper we show how the inferential issues that follow from
these exciting developments may be clarified by means of two par-
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ticular aids to logical reasoning. The first of these, which we refer
to as the hierarchy of propositions, arose from a Case Assessment
and Interpretation (CAI) project that has been running for three
years within the Forensic Science Service (FSS). The work of the
project has resulted in a series of papers (2-5) and the concept of
the hierarchy of propositions is discussed in some detail in the sec-
ond and fourth of these: we outline the idea in the next section. The
second aid, Bayesian networks, which we will discuss, has been de-
scribed in a previous paper in this journal (1) and in this paper we
show the application of Bayesian networks software to two case
studies.

The Hierarchy of Propositions

The hierarchy embodies the principle that interpretation of evi-
dence is not possible unless one considers at least two competing
propositions. In most cases these will represent the prosecution and
defense positions. At court, the jury will consider propositions of
the kind:

* The defendant raped the victim
¢ The victim was raped by some unknown person

For obvious reasons, we refer to these as Offence level proposi-
tions: this is the third, or highest level in the hierarchy. Propositions
at this level generally invoke considerations quite outside the com-
petence of the expert witness and very often it will be necessary for
the scientist to address propositions at the second or Activity level,
for example

* The defendant is the person who smashed the window
* The defendant has never been at the scene

For a scientist to address activity level propositions, it will be
necessary for him/her to have a body of information relating to the
alleged incident and whatever the suspect/defendant is saying (if
anything): we call this the framework of circumstances. In the pre-
sent instance, the first proposition is conditioned by the informa-
tion that the window was broken by a man and the second proposi-
tion is here conditioned by what the defendant is saying—that he
has never been at the scene. The propositions are liable to change
if the framework changes in any way; for example, if the defendant
later admits being at the scene but claims that he was an innocent
bystander, then the second proposition would change.

The framework of circumstances also conditions the interpreta-
tion of the evidence in relation to the two propositions. For exam-

520 Copyright © 2002 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959



ple, in the present instance the quantity of matching glass that
might be found on the clothing of the defendant would depend on
factors such as: the size and location of the window; how the win-
dow was allegedly smashed; and the length of time between the in-
cident and the taking of the clothing for examination. So it is when
the scientist is addressing propositions at this level that it is neces-
sary for him/her to consider issues of transference and persistence.
If, however, the framework contains so little information that the
addressing of these issues becomes problematic then the scientist
will need to move to what we call Level 1 or Source level proposi-
tions, such as:

* The glass recovered from the defendant’s clothing came from
the broken window

* The glass recovered from the defendant’s clothing came from
some other source.

At this level, the problem of addressing transfer and persistence
must be left to the court where, no doubt, advocacy will play a ma-
jor role.

There is another consideration that had not been taken into ac-
count when the original hierarchy (2) was drawn up. Classically, at
the source level, the scientist might have addressed propositions of
the kind:

* The crime stain was left by the suspect
* The crime stain was left by some unknown person

This pair would be conditioned by the scientist’s confidence that
the genotyping information had actually been derived from the
stain that was visible. However, given the sensitivity of today’s
technology it is possible to envisage cases in which such an infer-
ence is dubious. The visible stain, for example, might be very small
and degraded, yet the substrate bears another, invisible deposit
from another source that is of better condition and readily amplifi-
able. Given such conditions, it may be necessary to move to what
we now call sub-Level I propositions, such as:

» The DNA is that of the suspect
* The DNA is that of some unknown person

As a general rule, it is felt that the higher the level of the propo-
sitions that the scientist can address, the greater the value that is
added to the criminal justice process. When the scientist has to set-
tle for the lower levels then the task of moving to the high-level of-
fence propositions must be left to the jury.

Case Study 1

A family returned to their home to find that it had been burgled
during their absence. It appears that the intruder (or intruders)
gained entry by means of breaking a window at the rear of the prop-
erty. Near to the point of entry, on a paved patio, a crime scene of-
ficer recovered a cigarette end. None of the family smoked, the sur-
roundings of the house were carefully maintained and the patio
regularly swept. A few weeks later, a suspect was apprehended in
connection with another incident and he was found to have in his
possession a checkbook for drawing on the account of one of the
family members. He said that he received the checkbook from “an
unknown man in the pub.” He denied ever being anywhere near to
the home that was burgled.
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If the cigarette end is submitted for DNA profiling and the re-
sults compared with the suspect’s DNA then various outcomes are
possible, which we categorise as follows:

Match—a single profile from the cigarette end that is attributable
to the same genotype as that of the suspect.

Mixture/Match—a mixed profile from the cigarette end that in-
cludes alleles that are present in the profile of the suspect.

Different—This includes either a single profile that is a different
genotype from that of the suspect; or a two person mixture that dif-
fers from the suspect’s DNA profile.

No profile—Our current technique fails to detect any DNA pro-
file.

The CAI project places considerable emphasis on the notion of
pre-assessment (see, in particular, the first paper in the series
(3))—that is, thinking in careful detail of the expected outcomes of
an analysis beforehand. In the present case, referring to the suspect
as X, we formulate the following pair of provisional activity level
propositions:

S: X is the person who smoked the cigarette

S': Some other unknown person smoked the cigarette

In the event of a match, we might consider sub-level 1 proposi-
tions, of the kind:

The DNA recovered from the cigarette end came from the sus-
pect

The DNA recovered from the cigarette end came from some un-
known person

The likelihood ratio for this pair of propositions would simply be
the inverse of the match probability. For the purpose of this dis-
cussion, we will take the match probability to be essentially zero,
so the infinite likelihood ratio would correspond to the kind of cat-
egorical opinion that is usually associated with fingerprints opin-
ions: the DNA is that of the suspect. Of course, this is not the way
that DNA evidence is interpreted in practice, but it simplifies the
discussion without detracting from the principles.

We will now expand the analysis to take account of three issues
that we present in the form of paired propositions:

A: DNA from X entered the process by innocent means

A: No DNA from X entered the process by innocent means

Such adventitious transfer may flow from various causes, in-
cluding contamination as part of the analytical procedures.

We introduce the consideration that is equivalent to the rele-
vance term as used by Stoney (6) and Evett (7):

B: The person who smoked the cigarette left sufficient DNA to
give a profile

B: The person who smoked the cigarette did not leave sufficient
DNA to give a profile

We also consider:

P: DNA from some third person entered the process

P: No DNA from a third person has entered the process

Here we use “third person” to convey the idea of someone other
than the suspect and also someone other than the person who
smoked the cigarette, if that is not the suspect. For the purpose of
this discussion, we will assume that the uncertainties of each of the
three pairs of propositions just defined are not influenced by each
other. For example, whether or not DNA from X entered the pro-
cess by innocent means is not influenced by whether or not the per-
son who left the cigarette left sufficient DNA to give a profile; nor
by whether or not DNA from some third person entered the pro-
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cess. These independence assumptions are not essential, but they
do make the discussion much simpler.

Let E denote the outcome of the comparison, then we seek the
likelihood ratio:

_ PrE|S, I)
Pr(E| S, )

It is now necessary to expand the terms in the numerator and de-
nominator to take account of the considerations embodied in the
three intermediate pairs of propositions. This can be done by in-
voking the “law of total probability” (explained, for example, in
(8)). The existence of three pairs of propositions means that there
are eight combinations of possibilities, such as, for example: A, B,
and P are all true; A is false, B and P are both false; and so on. If

TABLE 1—(a) Pr(E|...S) terms and (b) Pr(E|...§) terms.

we take the conditioning on / to be implicit, then the numerator is
then written out as:

Pr(E | ABPS) Pr(ABP | S) + Pr(E | ABPS) Pr(ABP | S)
+ Pr(E | ABPS) Pr(ABP | S) + Pr(E | ABPS) Pr(ABP | S)
+ Pr(E | ABPS) Pr(ABP | S) + Pr(E | ABPS) Pr(ABP | S)
+ Pr(E | ABPS) Pr(ABP | S) + Pr(E | ABPS) Pr(ABP | S)

The eight terms of the kind Pr(E | ....) can be simply assigned as
is shown in Table 1(a). For example, if A, B, and P are all true, then
we will expect to see DNA from the suspect, by both innocent and
offence related means, as well as DNA from a third person: the ob-
servation will thus be a mixture/match with probably one. Readers
may find it interesting and instructive to check the other lines of
this table.

We now define the following terms:

a is the probability that DNA entered the process by innocent

Mixture/ ) No means and we assume that this occurrence is independent of
Match Match Different Profile whether or not S is true:
ggg} %gig 8 i 8 8 Pr(A|S) = Pr(A|S) = Pr(A) = a
ggg} %ggg } 8 8 8 b is the probability that the person who smoked the cigarette left
Pr(E| ABPS) 0 1 0 0 sufficient DNA to give a profile. Without any particular knowledge
Pr(E| ABPS) 0 0 1 0 of whether or not the suspect is a good shedder of DNA, this prob-
Pr(E| ABPS) 1 0 0 0 ability is the same whether or not S is true:
Pr(E| ABPS) 0 0 0 1 _
Pr(B|S) =Pr(B|S)=Pr(B) =b
Mixture/ No . . .
Match Match Different Profile p is the probability that DNA from some third person entered the
process. There is no reason to believe that this is dependent on the
Pr(E| ABPS) 0 1 0 0 truth or otherwise of S.
Pr(E| ABPS) 0 0 1 0 _
Pr(E| ABPS) 0 1 0 0 Pr(P|S) =Pr(P|S) =Pr(P) =p
}P::Eg} g%ﬁ% 8 (1) (1) 8 Then, bearing i.n mind that. we assume the three pairs of inFer—
Pr(E| ABPS) 0 0 1 0 mediate propositions to be independent, the terms of the kind
Pr(E| ABPS) 1 0 0 0 Pr(ABP|S) can be written out as in Table 2.
For the denominator, the eight Pr(E | ... ) terms are shown in
Table 1(b). The terms of the kind Pr(ABP | §) are the same as the
corresponding terms in Table 2.
TABLE 2—Pr(ABP| ) terms. It is now possible to consider the pre-assessment of the case. We
Pr(ABP| ) bpa have allowed for four possible outcomes, E, and Tables 1 and 2 en-
Pr(ABP|.) bp(1 — a) able us simply to work out the probability of each outcome given
Pr(ABP| .) b(1 — pa that either S or S is true: these are shown in the second and third
Pr(ABP|.) b(1 = p)(1 —a) columns of Table 3 and follow from the appropriate cells of Tables
Pr(ABP| ) (1 = Dypa 1 and 2 by means of the formula derived using the law of total prob-
Pr(ABP| ) (I =Dl —a) ability. For example, if E is a “Match” then the numerator, Pr(E | S),
Pr(ABP| ) (1 =)l = pa is given by the addition of the probabilities on the 3, 4™ and 7%
Pr(ABP| ) (1= b1 =p)1 —a) lines of Table 2 because they are the lines of Table 1(a) that are one
TABLE 3—Pre-assessment table.
Outcome, E Pr(E| S) Pr(E| S) LR
Match (1 = p){b + a(l — b)} (1= b1 = pa b
a(l — b)
Mixture/match p{b + a(l — b)} a{b + p(1 — b)} %
. p(l —b)
Different (1 = b)p(l —a) (1 —a){b+p(d —b)}

No profile (1 =01 —p)1 —a)

{b+p(1 —b)}
1 =b1—p—-a 1




and not zero i.e.:

Pr(E = Match | S)
=ab(l —p)+ (1 —a)b(l —p) +a(l = b)(1 —p)
=0 =p{b+a(d - D)}

which is the term in the first row and first column of Table 3. All
of the other terms in the second and third columns are similarly de-
rived.

If we now take each term in the second column and divide it by
the corresponding term in the third column, this gives the LR that
we would calculate for the outcome corresponding to that row of
the table. This is the pre-assessment table.

Clearly, our pre-assessment depends on the magnitudes we as-
sign to the probabilities a, b, and p. If these values can be assigned,
the pre-assessment can be carried out. For example, imagine that
we believe that: the probability that the suspect’s DNA entered the
process for innocent means is small—say 0.01; the probability that
the person who smoked the cigarette left DNA is moderate—say
0.9; and the probability that DNA from some third person entered
the process is fairly small—say 0.1. Then the first line of Table 3
tells us that, if the suspect is truly the person who smoked the
cigarette, then the probability that the outcome of the analysis will
be a match is 0.9 X 0.9 + 0.01 X 0.1 = 0.81 and the LR given that
outcome would be approximately 900. This would denote the
strength of the evidence supporting the proposition S that the sus-
pect is the person who smoked the cigarette. Note that, although
this is strong evidence, it is not in the orders of magnitude that
courts have come to expect in DNA cases and this, as we have said,
is because we are considering higher level propositions that relate
to the activities that are of interest to a court. Recall that we have
assumed an infinite LR for the sub-level 1 propositions relating to
the origin of the DNA.

But, of course, we recognize that, in practice, it will be difficult
to assign precise values to a, b, and p. They could, to a considerable
extent, be informed by experimentation but will inevitably be case
specific. The strategy then is to consider the sensitivity of the out-
comes to ranges of values for the probabilities. We could, using
Table 3, produce families of graphs but it is more informative to
employ computer software to carry out simulations. Indeed, in
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more complex cases this is the only realistic way to proceed. This
brings us to the discussion of Bayesian networks.

Use of Bayesian Networks

A Bayesian network is a graphical model for expressing the
probabilistic relationships among a set of variables. In essence, a
network consists of nodes, representing variables, and arrows that
symbolize the conditional relationships between the variables. A
variable might be a continuous variable, such as a measurement on
a quantity; or a set of discrete outcomes such as the truth or other-
wise of a set of propositions. The model efficiently encodes the
joint probability distribution for a large inter-related set of vari-
ables. It gives not only a graphical representation of the problem
but allows probabilistic inference.

Figure 1 shows the Bayesian network for our first case study that
has been implemented in a program called Hugin Lite (Version 5.3,
free demonstration version available at http:\\www.hugin.com).
There are five nodes. Nodes 1 to 4 correspond to the four pairs of
propositions that we have defined in the previous section; each of
these has two states, corresponding to which of the alternative
propositions is true. Node 5, which has four possible states, corre-
sponds to the outcome of the analysis and its dependence on Nodes
1 to 4 is symbolised by the four arrows. Note that Nodes 1 to 4 have
no arrows between them, because of the independence assumptions
that we have made but the network could easily be modified to al-
low for dependencies. For example, if it were known that the sus-
pect was a particularly heavy shedder of DNA then an arrow from
Node 1 to Node 2 would enable us to include different values for
the probability of the smoker leaving DNA, depending on whether
S or S were the case. The computer program makes such modifica-
tions simple, whereas the algebraic solution soon becomes ex-
tremely complex.

Once the network has been drawn, and the appropriate condi-
tional probabilities specified, then it can be compiled, just like any
other high level programming language. Figure 2 shows the result
of compiling the program with the values of a = 0.01, » = 0.9, and
p = 0.1 that were used in the previous section. For the time being,
the probabilities for S and S have been set to 0.5—this will be
changed shortly. The main window shows the network and the left
hand window shows the probabilities, expressed as percentages.

£= { March, Mixture _ Matck, Different, Ne_ Prq/?le}

The conditional probabilities for cach outcome are given in

Table 1.

FIG. 1—Bayesian network for the Case Study 1.
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FIG. 2—Bayesian network for Case Study 1 in Hugin.

) F Suraer it DEAT TR
[ LR

[ 1203 Me ] 0D Mo
0 3L DR Yo T (K] ﬂ 3_L g DSLL fram KT (4]

100 Ve 180 Yeu

I RR0T Mo NS R Mo
2 4D e el Rt () b Dok o thind pason T

i 1000 Ve 1 1000 Teu
R0 N e B050 Ma
D & Duicers §) 0 & Oudcoema 1)
0108 Mars 169 e
l:r S0t M AR [ 0§ st e avanoh
0% Cafferend e WD et
=1l By 1 BET e

FIG. 3—Pre-assessment in Hugin for Case Study 1.

The power of the Bayesian network is best realized when it is
used for “back propagation”: that is, given a particular outcome,
such as a match, the program can be used to update the probabili-
ties for S and S. However, at present, we are emphasising the pre-
assessment process and this may be done as follows. First, we set
the probabilities at Node 1 to 100% and zero for S and S respec-
tively then, when the program is run, the probabilities for the four
outcomes given that S is true are calculated. These can be seen in
the left hand column of Fig. 3 and correspond to the second column
of Table 3, calculated with the assigned values of a, b, and p. Note
that the probability of the outcome “match” is 0.81, as calculated
earlier. Next, if the probability S is set to 100% and the table recal-
culated, the second column of Table 3 is derived, showing the prob-
abilities of the four outcomes given that S is true.

The LR’s for the four outcomes can be calculated by taking the
ratios of the corresponding probabilities in the four rows.

Recall that the intention is to carry out a sensitivity analysis,
however. The scientist may be reluctant to provide precise values
for the probabilities and it is useful now to regard a, b, and p as pa-
rameters whose values are unknown. The scientist then expresses
his/her knowledge in the form of probability intervals for the three
parameters. Imagine that the scientist expresses his views in the
form of 80% probability intervals for a, b, and p as in Table 4.

TABLE 4—Lower bound and upper bound for the parameters.

Lower Upper
Parameter Bound Bound
b 0.8 0.95
a 0.001 0.01
p 0.05 0.1

These beliefs can usefully be modelled by Beta distributions as
shown in Fig. 4.

Our aim is now to build the uncertainties in a, b, and p into our
pre-assessment. Whereas Hugin Lite could be used manually to ex-
plore the sensitivity of the outcome to changing values of a, b, and
p, this would be a cumbersome process. It is far more effective to
carry out simulations and this is not possible within this version of
the program. Consequently, we have implemented the network in
MATLAB 5.0 (Mathworks, Inc.) using the Bayes Net Toolbox 2.0
developed by K. Murphy (http://www.cs.berkeley.edu/~mur-
phyk/). This implementation leads to the same output as Hugin but
it is more versatile.

Using this program, it is possible to carry out large number of
pre-assessments, using values of a, b, and p generated at random
from the Beta probability distributions shown in Fig. 4. This is
done by means of an appropriately programmed random number
generator: for each simulation, a value of a is generated from the
probability distribution in Fig. 4(a) and by analogy for b and p. One
thousand simulated pre-assessments were carried out in this way,
computing at each iteration the probabilities for each outcome
given S and S. The results are two probability distributions for the
LR, one given that the prosecution proposition is true (S), the other
given that the defense proposition is true (S). These distributions
are shown in Fig. 5 and summarized in Table 5.

Consider the first graph in Fig. 5. Recall that we are at the pre-as-
sessment stage so we do not yet know the outcome of the analysis
SO we are not yet in a position to calculate the LR—we can only talk
about a probability distribution for the LR. This first graph is a prob-
ability distribution for the log (base 10) of the LR given that the
prosecution proposition (S) is actually true. From the height of the
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FIG. 5—Distribution of likelihood ratios in Case Study 1 following 1000 pre-assessment simulations.

TABLE 5—Summary of the pre-assessment in Case Study 1.

Likelihood IfSIs IfS1Is
Ratios Verbal Equivalent True (%) True (%)

< 0.001 Strong evidence to support S _ 0 54.6
0.001 to 0.01 Moderately strong evidence to support S 0.35 33.7
0.01t0 0.1 Moderate evidence to support S 0.55 11.2
0.1to1 Limited evidence to support S 11.2 0.22
1to 10 Limited evidence to support S 1.3 0.22
10 to 100 Moderate evidence to support S 4.6 0.03
100 to 1000 Moderately strong evidence to support S 16.8 0.03

> 1000 Strong evidence to support S 65.2 0
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bars, it can be seen that there is, approximately, an 80% chance of
the outcome being such that an LR in excess of 100 is derived. Such
LR’s would, in the Forensic Science Service, be expressed as mod-
erately strong, or strong, support for S: the equivalence is shown in
the third column of Table 5. We must note that there is also a chance
(approximately 11%) that the outcome of the analysis will be such
that it will support the alternative S—even though S is the true state.

The second graph in Fig. 5 shows the probability distribution for
the LR given that the defense proposition (S) is actually true. With
a probability of approximately 99.5% we would expect to see an
outcome that supported that proposition. We must recognize that
there is a chance, albeit small—0.5%—that the outcome would
yield support for the prosecution proposition. Again, this can be
seen in more detail in the fourth column of Table 5. The idea of pre-
assessment is that such graphs and tables should be used to inform
a discussion with the customer who is to pay for the analysis and to
form a clear idea of the customer’s requirement and expectations.

Now we move on from pre-assessment stage. Imagine that the
analysis has been carried out and an unmixed profile has been ob-
tained that matches the profile of the suspect. It is necessary now to
ask the network to provide a different kind of analysis—given that
we have observed a match, what is the LR in relation to the two
propositions S and S? But, of course, there is not a precise single
value for the LR because of the uncertainties in a, b, and p. The
same sort of simulation process as we have just described leads to
a probability distribution for the LR given that we know the out-
come. This is shown in the first part of Fig. 6: note that the modal
value represents a LR of approximately 1800.

If, on the other hand, the result of the analysis is that a profile is
recovered from the cigarette that is different from that of the sus-
pect then a similar process of simulation analysis can be carried.
This leads to the probability distribution for the LR that is shown in
the second part of Fig. 6.

Whereas the distributions in Fig. 5 would be used for pre-as-
sessment, the distribution here would be used to inform discussions
between the scientist and counsel—whether prosecution or defense
(preferably both)—before a trial. It could also enable the scientist

100 150 200

50

in assisting a court in understanding the importance of the relevant
issues. Once again, we emphasise the difference between the ad-
dressing of sub-level 1 and Level 2 propositions. In the event of a
match, there would be an infinite LR in favour of the sub-level 1
proposition that the DNA recovered from the cigarette is that of the
suspect. However, in relation to the activity level propositions S
and S the LR is of the order 1000. It seems to us that it is essential
for forensic scientists to recognize this distinction and to have the
ability to explain the issues to a court of law.

Case Study 2

The second case study is more complex than the first and enables
us to explain the ease with which increasing complexity is accom-
modated within a Bayesian network. It is extremely difficult to en-
visage a full algebraic solution to this case.

The circumstances are as follows: a watch with a broken strap
was recovered at the scene of a rape and it was suspected that the
watch had been worn by the offender. The watch was submitted for
DNA profiling using LCN with a view to providing intelligence in-
formation regarding the possible wearer. In such an intelligence
mode, it is more difficult to proceed to a pre-assessment because
there is no simple pair of propositions. However, given the exis-
tence of the National DNA database it appeared a reasonable strat-
egy to proceed with the analysis of three samples taken from three
different areas (Areas 1 to 3) of the watchstrap. Area 1 was the out-
side surface of the strap at the point of damage, Areas 2 and 3 were
two separate zones of the inside surface of the strap. Mixed DNA
profiles were obtained from each of the areas examined:

Area 1: A major component matching the victim’s profile and a

minor male component.

Area 2: A major male component (corresponding to the minor
component in Area 1) and a minor component matching
the victim’s profile.

Area 3: A major male component as in Area 2 with an additional
minor component that did not correspond to the victim’s
or the suspect’s profile.
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FIG. 6—Distribution of likelihood ratios in Case Study 1 for the outcomes “match” and “different.”



The major male component was searched against the National
DNA Database and a corresponding profile was found from a man
who lived in the locality of the incident. This man became the main
suspect. He admitted owning a watch, without specifically desig-
nating the recovered watch, but stated that he lost it approximately
two to three weeks before the offence.

For sake of simplicity, we will treat the three areas from the
watchstrap as one. Moreover, we will continue to assume that the
DNA profiling has ultimate discriminating power: a match implies
an individualisation, or an infinite LR at sub-Level 1. So the DNA
component matching the victim’s profile is identified and ex-
plained by the incident. The victim aside, the outcome is that the
major component came from the suspect and the minor component
came from an unknown person.

We will now address the impact of this result on the following
pair of Level 3 propositions (offence level):

O: X is the offender

O: Some other unknown person is the offender

We know the outcome in this case and for the purpose of con-
structing the Bayes’ network, we will focus on that outcome versus
all other possible outcomes:

Observed outcome—a mixed profile from the strap that includes
a major component matching the suspect’s DNA profile and a mi-
nor component from one unknown person. This is the outcome of
interest.

Any other outcome—This includes: a single matching profile;
other mixture matches; different profiles; or no profile at all.

The breakdown of the list of outcomes could be more detailed,
taking into account every possibility offered by the major and minor
components. This would be recommended for carrying out a detailed
pre-assessment stage. However, in our case, we would like to focus
on one particular outcome and to assess the sensitivity of the Level 3
LR, given that outcome, to the various probabilities that are relevant
to its assessment. To do this we first implemented a network in
Hugin, shown in Fig. 7 that appeared to us to encapsulate the various
intermediate considerations, and the dependencies that bore on the
observed outcome of the comparison (Node 12).

The definitions of the nodes and their states are given in Table 6.

The conditional probability specifications are detailed and ex-
plained when necessary in Table 7.
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TABLE 6—Nodes and possible states of the Bayesian network in Case

Study 2.
Node
Number Node Description Possible States
1 Is X the offender? 0: X is the offender
O: X is not the offender
2 Did the offender wear the watch?  R: the watch was worn
_ by the offender
R: the watch was not
worn by the offender
3 If X is not the offender, has he W: X has worn the watch
ever worn the watch? W: X has never worn the
watch
4 If X is not the offender, but has T,: the day of the offence
worn the watch, when was T,: a week ago
the last time? T5: a month ago
T,: never
5 Is there a possibility of scene C: yes
or laboratory contamination? C:no
6 Is there any contribution from a Th: yes
third person? By contribution Th: no
from a third person, we mean
all DNA contribution coming
from sources other than the
victim, X or the offender.
7 Legitimate DNA profile from X X_major; X_minor;
no profile
8 Adventitious DNA profile X_major; X_minor;
from X no profile
9 DNA profile from a third person Z_major; Z_minor;
no profile
10 DNA profile from the offender 0_major; o_minor;
X_major; X_minor;
no profile
11 DNA profile from X unrelated X_major; X_minor;
with the offence no profile
12 Outcome from the DNA Match_Major/
analysis of the crime sample Mix1_Minor

following a comparison
with the DNA profile
from X

Any other outcome

R

T g o
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FIG. 7—Bayesian network for Case Study 2.
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TABLE 7—Conditional probability specifications for Case Study 2. When not stated explicitly, the probability for the complement of an event

(with associated probability p) is simply 1-p.

Probabilities

Comments

Pr(0) = 0.5
Pr(R) = r
Pr(W| O

Pr(T.)
Pr(T|.)
Pr(T5|.)
Pr(T4|.)

Pr(x_major| .)
Pr(x_minor| .)
Pr(no profile| .)

Pr(x_major| .)
Pr(x_minor| .)
Pr(no profile| .)

Pr(z_major| .)
Pr(z_minor|.)
Pr(no profile| .)

Pr(o_major| .)
Pr(o_minor| .)
Pr(x_major| .)
Pr(x_minor| .)
Pr(no profile| .)

Node 11: binary table

Node 12: binary table

0
0
0.9
0.1
0

coocoo
— O

Ql

—ocoX

—oc oo oX|

The Bayesian network is initiated with this default value.

r represents our assessment of the relevance of the watch.

The first probability is O by the definition of Node 3. The suspect admitted having a
watch but there is doubt on whether it was that watch or another one. Evidence has
been provided regarding paint splashes visible on the recovered watch and on a pho-
tograph showing a watch worn by the suspect. s represents our assessment of that ev-
idence.

¢ represents our assessment of the probability of a contamination.

q expresses our assessment of the probability that a third person contribution may have
entered the process if X is not the offender. ¢ is the probability for the same event but
if X is not the offender.

The probabilities (under W) were assessed based on the testimony of the suspect who
admitted having lost his watch 2 to 3 weeks ago.

These data represent our state of knowledge of the efficiency in function of the delay
between the last wear and the analysis of our DNA profiling techniques on watch-
straps.

In case of contamination, we expect with a high probability (80%) of a major DNA con-
tribution from X, otherwise, the contribution will be minor (20%).

If a third person contribution is involved, we expect to obtain most of the time (80%) a
minor DNA profile and otherwise a major DNA profile (20%).

If the watch is not relevant, then we expect to recover no DNA profile from the of-
fender, otherwise, we expect to obtain a major DNA profile (90%) and minor DNA
profile (10%) from the offender (which depending on O may be X or an unknown
person).

This table is constructed applying four addition rules that dictate the outcome when two
contributions from X are mixed together. The following permutative rules have been
used:

(1) x_major + anything else gives x_major
(2) x_minor + no profile gives x_minor
(3) x_minor + x_minor gives x_major

(4) no profile + no profile gives no profile

This table determines the outcome in function of the contribution obtained from Node
9, 10, and 11. The four addition rules above are also applied when necessary. For ex-
ample:

If Node 9 = no profile, Node 10 = o_minor and Node 11 = x_major, then the out-
come will be Match_Major/Mix1_Minor.

If Node 9 = no profile, Node 10 = x_minor and Node 11 = x_minor, then the out-
come will be a match, classified as any other outcome.

Etc.

Clearly, there are many probabilities that contribute to the over-
all assessment of the evidence in relation to the Level 3 proposi-
tions. Some of these might be within the expertise of the scientist,
others relate more to the circumstances surrounding the incident
and arrest of the suspect. We see the role of the scientist in such a
case as one, not of giving a firm LR to the court, more in the role of
explaining the sensitivity of the final assessment to the many rele-
vant factors. For the purpose of illustration, we can explore the un-
certainties in the LR that follow from uncertainties in the assign-
ment of r, ¢, t, ¢, and 5. As before, these can be treated as unknown
parameters and simulations run using Matlab. We assign 80%
probability intervals as follows:

r—is the probability that the watch was worn by the of-
fender. Clearly, this is of critical importance to the Level 3

propositions. The watch was found in an area that was
locked against public access and the owner of the premises
was satisfied that it was not there the night before the inci-
dent. On this basis, we assign an 80% interval for r of 0.95
t0 0.999.

c—is the probability that DNA from the suspect might en-
ter the process because of contamination during the investi-
gation or at the laboratory. This is a probability that would
appear to be within the domain of the scientist. For illustra-
tion, we will use an interval of 0.00001 to 0.0005. Ideally,
this would be informed by experiments that had been carried
out.

t, —We have seen that the outcome showed the presence
of a third unknown profile on that watch. The defence view
would be that this profile is that of the offender—who is not



X—whereas the prosecution view will be that DNA from a
third person has entered the process. There are some com-
plex issues here that we do not go into. Suffice it to say that,
if g were zero then the support for the prosecution proposi-
tion would also be zero; on the other hand, if ¢ were one then
the prosecution proposition would be well supported by the
observed result. These are issues to be explored with the
court but for the present sensitivity analysis we will assign a
probability interval of 0.2 to 0.8 to r and 0.05 to 0.2 to g. We
do not claim that these are in any sense the “right” ranges,
but they serve for illustration.

s—The suspect admitted having a watch but there is doubt
about whether or nor it was that watch or another one. Evi-
dence has been provided regarding paint splashes visible on
the recovered watch and on a photograph showing a watch
worn by the suspect. Based on our assessment of this piece
of evidence, we expect s to be high, but again this assessment
lies more in the domain of the court. For illustration, we will
use an interval of 0.85 to 0.99.

In the previous example, we showed the Beta distributions that
we used for simulation. Here, we omit the graphs but, for those who
might be interested in the detail, we show in Table 8 the Beta pa-
rameters for modelling r, ¢, t, ¢, and s.

TABLE 8—80% probability ranges and parameters for the underlying
Beta distributions for r, ¢, t, g and s.
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For each simulation, the values r, c, t, ¢, and s were generated ac-
cording to their respective distributions and the LR was obtained by
computing the ratio between the probability of the outcome of in-
terest given O with its corresponding probability given O. The dis-
tribution of the likelihood ratio for the outcome of interest is shown
in Fig. 8 and summarised in Table 9.

We repeat that we would see this distribution—and others like
it—as a medium for informing discussions with counsel and, if
necessary, at court, about the various issues that are relevant to ad-
dressing the Level 3 propositions in the case. We emphasise again
that the LR that we have taken for the sub-level 1 propositions is ef-
fectively infinite (though this is not a practice we would support at
court). The sensitivity analysis shows a modal value of around 6 for
the propositions that would be put to the jury.

Discussion and Conclusion

All those familiar with the presentation of scientific evidence at
court will be aware that, particularly in complex cases, the issues
put to the jury can descend to a welter of if’s, buts, and maybes. We
are not claiming that we have an instant solution for resolving such
confusion. What we are convinced of, however, is the power of the
main themes of our paper as aids to discussing the complicated is-
sues that can interact in cases where small quantities of DNA are
brought to the notice of the court. In summary, we emphasis four
features of our discussion:

1. The notion of the hierarchy of propositions is a powerful aid for
discussions among scientists; between scientists and advocates;

Lower Upper and must ultimately play a role in the presentation of evidence
Bound Bound Alpha Beta
1-r 0.001 0.05 0.71 34.7
c 0.00001 0.0005 0.055 189.7 TABLE 9—Summary statistics for the distribution of the likelihood ratio
t 0.2 0.8 2.06 2.06 for the outcome “Match_major/MixI_minor.”
q 0.05 0.2 3.39 25.12
1-s 0.01 0.15 1.17 15.84 15 3rd
Minimum Quartile Median Mean Quartile Maximum
NoTte: Our fitting algorithm for obtaining the Beta distribution parame-
ters converges efficiently for proportions under 0.5. For that reason the 0.298 3.361 5.148 6.587 7913 96.56
parameters for (1-r) and (1-s) instead of r and s were calculated. ) : ) ) : )
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FIG. 8—Distribution of the likelihood ratio in Case Study 2 for the observed outcomes given the specified uncertainties in r, c, t, q, and s.
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to a jury. The idea that, in relation to any issue, it is essential to
address two competing propositions is the key to the balanced
scientific view.

2. The idea of pre-assessment of a case also contributes to a bal-
anced view. It directs the scientist to consider his/her expecta-
tions before collecting scientific evidence. To say, after making
a particular observation “this is what I would have expected to
find” will always invite the suggestion that this is a post hoc ra-
tionalization.

3. We anticipate that Bayesian networks will play an increasingly
important role in forensic science. This does not necessarily
mean the vision of the scientist presenting networks at court—
but their power in enabling the scientist to understand the fun-
damental issues in a case and to discuss them with colleagues
and advocates is something that has not previously been seen
within forensic science.

4. As we said at the outset, the debates relating to the statistics of
DNA profiling may have tended to divert attention away from
broader issues that are every bit as important. In an individual
case, even if the inference with regard to the source of a sample
of DNA is effectively indisputable, the inference with regard to
whether or not the defendant is the offender may be subject to
considerable uncertainty.

We believe that our discussion has important implications for the
future of forensic science. A number of the probabilities that enter
our analyses are clearly the province of the jury and there may be a
view that the scientist should confine him/herself more to the tech-
nical level and not stray beyond the source level propositions. This
leaves all other interpretative issues to advocacy. However, we be-

lieve that the scientist can provide a logical perspective that might
otherwise be lacking. We do not attempt to minimize the difficul-
ties but we do believe that the scientist has a role in helping to re-
solve them.
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